STATIONARY MODE OF A NONLINEAR ELASTICALLY
HEREDITARY OSCILLATOR

S. I. Meshkov

The steady-state forced oscillations of a single-mass system subject {o an external pure
harmonic force are considered. The role of restoring force is played by a nonlinear func-

" tion, which takes account of hereditary effects as a sum of multiple integrals in accord-
ance with the Volterra theory. The problem is solved by the method of equivalent lineari-
zation, the discussion being confined to a triple integral of the hereditary type. The influence
of the hereditary nonlinearity on the system dynamic characteristics, namely, its amplitude,
phase, dynamic rigidity, hysteresis loop area, and Q, is investigated. In particular, the re-
ciprocal of the Q, which can be taken as a measure of the internal friction, is shown to be
independent of the amplitude of oscillation and to be the same as that obtained by linear
theory. The other dynamic characteristics prove sensitive to the nonlinear properties. The
exponential rational fractions proposed by Yu. N. Rabotnov are used as concrete hereditary
functions.

1. In many physical phenomena the connection between the output signal x(t) and input signal y () is
expressed by a relationship of the hereditary type, i.e., the system response at a given instant t is deter-
mined, not merely by the input signal at this instant, but also by the input excitation throughout the period
prior to t. The Volterra nonlinear equations {1], connecting the input and output signals of a system invari-
ant under changes in the time origin, can be written as [2]

()= D Qm Q/m(tl, ty o tw) 1] y (6 — ) dt, a.1)
m=1¥ > =1
y =3 {n Senttite. .t [T ot~y 1.2)

=] Veeoee Fe=1

Here, the functions fm (tystas + - + 5 tpy) take account of m~-th order retardation effects, while the cor-
responding resolvents gy (ty, t;, ..., ty) allow for n-th order relaxation effects; when m =n = 1, 1.1) and
(1.2) become the Boltzmann linear hereditary equations. The lower limit of integration is zero, in accord-
ance with the principle of causality, since the response x(t) cannot precede the input signal y(t).

In view of (1.1) and (1.2), there is a relationship between the functions fm(tl,tz, ceesty) and
gnit,,ts.. .,tp), whichcanbe conveniently written in Fourier space. In fact, on Fourier-transforming (1.1)

and (1.2), we get

X@ = 3 {m{Fat .. 08 (=043 o)1 ¥ (05 do, (1.3)
m=1" ", i=1 r=1

y ) =3 {m{6. ... 008 (~0+ 3o I] X o) dor .4
n=1 0 =1 {==1
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Here, the upper case letter denotes the Fourier integral transform of the corresponding lower case
letter:

X {w) = (231)—’/25 z(t)eoidt, Y(o)= (231)*‘/:8 y () e-iotdL (1.5)
¢ [
6, (@, ... 0) = (Zn)-‘/z("—l)g n Sexp (,_ » mvtv> Gn(te, .. 1) dby.. dE, (1.6)

v=1

o

An expression similar to (1.6) can be written for F, (W, ..., W),

Substitution of (1.4) in (1.3) gives

X (o) :—:mélg;,gﬁ‘m CHEPES QM)6(~m+ii'lwi>k1:I_L
) { > SO:LQGH (@ - s )9 (— Ox +.‘i mj') ]iX(‘Dz')dmzl} 4D
0

1
n=1 =1 I
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This identity enables a connection to be established between the functions Fy, and Gy, for any values of m
and n. To obtain this connection, concrete values have to be assigned to the indices when writing ocut the
right side of (1.7); then the coefficient of the linear term in X(w) is put equal to unity, while each nonlinear
term in X(w) has to vanish. Inversion equations are thus obtained for each value of m and n; due to their
complexity, the formulas are usually only quoted for the first three values:

Fi(0)G (o) = 1, Gol®1,0;) = — Fy(0g, @)[Fi(0)F5{0,)F (0 + 0,)]7
Gy (0, 0,. ) == [H Filoy) F o+ 0, + (’33).]_1 {_‘ Fy(0), 0y, 03) (1.8)
fe=1 -

- %‘ 2 [F1(o;+ a7 Fy(o;, 0,) Fy(0;, o; + mk)}

isjsf—si
By this means, either (1.1) or (1.2) may be used, according to the concrete problem.

2. Consider the stationary mode of a one-dimensional oscillator moving under the action of an ex-
ternal pure harmonic force P cos wt. Assuming that x(t) represents the displacement, and y(t) the restor-
ing force, the equation of motion becomes

Mz + ylz,x') = P cos ot 2.1)
where M is the mass and the dot denotes differentiation with respect to time.

The solution of (2.1) will be found by the Krylov-Bogolyubov method of equivalent linearization [31.
The equation is first rewritten as

Mz + o™z’ 4 kx + e(z,2) = P cos of 2.2)

where € (x, X*) denotes the error that results from replacing the nonlinear function y(x, x*) by an equivalent
linear visco-elastic part, i.e.,

e(z,x) = y (2.2) — kr — o7'nx (2.3)
The stationary solution of 2.2), withe(x,x") = 0, is
z=A cos 8, 06 =owf—¢ (2.4)
whence the amplitude A and tangent of the phase-shift are easily found:
A =Pl 4+ (k — Mo®1~", tgp =n{k — Me?)™? 2.5)

The coefficients k and 7 are found from the minimization condition for the error € (x,x"), which is
written in the form of two equations, averaged over the period of oscillation T = 27w™1 [4, 51:

(@ aFy =0, (Fls@me)?y =0 2.6)
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On substituting (2.3) in (2.6), expressions are obtained for 7 and k that allow for the nonlinear proper-
ties of the system:

om 2n
k= (nAy{y(4,0)cos8d0, 1= —(wd){ y(4,0)sin6do @.7)
0 [1}

The role of dynamic modulus of the system is played by k, while 7 is proportional to the hysteresis
loop area. The reciprocal of the system Q is taken as a measure of the internal friction, and is given by

T
1 AW PS
0

-— . P i
Q' =5 7 = miar ) ¥ () cosotdt = TP =—2—, @.8)

Ak

Notice that Q! is the same as the tangent of the phase-shift tg ¢ in the quasi-static case, i.e.,
when M = 0,

3. The method described in Section 2 can be applied to the system (1.2), Substituting (1.2) in (2.7)
and recalling (2.4), it is found that the coefficients k and 1 are determined solely by the odd terms in (1.2).
Retaining only the first three terms in (1.2), the following expressions are obtained:

k = Re Gy(@) +3,n4’ReGy(0, o, — ) (3.1)
— 4 = Im Gyo) + ¥, nd’Im G4, o, — 0) 3.2)

Here, Re Gy, and Im Gy, are the real and imaginary parts of the complex quantity Gy, given by (1.6).
The amplitude A is found as a function of the frequency and rheological parameters of the system from a
sixth degree equation, obtained by substituting (3.1) and (3.2) in the first of 2.5):

GA® 4 bAt 4 cA2 - d =0
2 = CLm)t(Re ) + (ImG2, ¢ = (ImG,)* + [ReG, — Mo?l?
b = 3n[ReG; Im G, + ReGy(ReG, — Mo, d=—P?

(3.3)

It is easily seen that the coefficient ¢ is equal to the square of the reciprocal of the amplitude for a
linear oscillator, i.e., in the case whena =b = 0 or Re Gy = ImG3 = 0. In this case the system dynamic
characteristics, namely, k, 7, tg ¢, and Q1, are independent of the amplitude; in the nonlinear case, they
are functions of the amplitude A, which is given by the complicated equation (3.3).

Solution of the problem can be somewhat simplified if the functions g;(t;) and gs(t\t,,t3) are specially
chosen as follows {6, 7]:

&1(t) = g(ty), 8ty by t3) = glte(t,)elts) (3.4)

Then,
Re Gy = (2n)'6,ReG, ImG, = @) 6,ImG, G, = (ReG) + (ImG) (3.5)
a = ()63, b =%6(G, — Mo*ReG), c = G, —2Mao*ReG + M?o* (3.6)
kE=(1+3%,4%)ReG, —n = (1 +%4*G)Im G 3.7)

1t immediately follows from this that the internal friction Q! is independent of the oscillation ampli-
tude. For, substituting (3.7) in (2.8), Q! is found to be given by just the first term of (2.1), i.e., is the
same as the value obtained from linear theory:

Q= — Im G(o) [BeG(m)]‘l, ImG{o) <0 (3.8)

4, To investigate the influence of the nonlinear properties on the amplitude A and the other dynamic
characteristics, g(t) will be written as '

g(1) =k [0(t) —VeTeYE (— 1,2, T)],

o (=) (/T )™
Ey(— 1,1, 7o) =11 ) ToEThT (4.1)

n=0

where §(t) is the Diract 6-function, Ey( —1,t,7¢} is the Rabotnov exponential rational fraction (8], ¥ €¢0, 1)
is the quality parameter, T the relaxation time, k, and k, are respectively the unrelaxed and relaxed
values of the elastic modulus, and vg, V5 are the modulus deficiencies:
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Ve = (koo - ko) koo_l’ Vo = (kDO - 'Z‘:o) ko—l

Using (4.1), the following expressions are easily obtained for the real and imaginary parts of Gw) in
the Fourier space:

~Y 4-cos P | sin ¥
ReG:kmb_WLﬁ(—Cﬁ*J’ ImGZ""VEkmm
4.2
Q (u, v) = w4 v¥%Y + 2uv cos P, K= 0T, §=1,my #.2)
(u,v) +
Substitution of (4.2) in (3.5), (3.6), and (3.7) gives
g [Q kg, ko) T2 Q(k,, — Ma?, ko— Ma?)
“2"16[‘9(1,1)']' = YN . “.3)
3 [ Q (k. ko)]2 Mo [k - kg™ + (k, + ko) cos Y] *
b:?[ o1 ] ft- - }
u Y cos P 3 AQk,, ko)]
k:kW[1""‘ CTIR) ][1+Z YN "
siny 3 AXQ(k,,, ko) ] R
M= (koo — ko) gr77y [1 T T onn

The behavior of the amplitude A as a function of the frequency w and the rheological parameters was
examined in [9, 10] in the linear case, where A = 1/Ve, The main features of the frequency-dependence of
A in the nonlinear case can be seen without performing the laborious computations needed for solving the
sixth degree Eq. (3.3), by confining the discussion to two limiting elastic cases, namely, the relaxed and the
unrelaxed. It is assumed, in fact, that the amplitude A will vary slowly at either high or low frequencies,
and asymptotic formulas are written for k and 7 in the respective cases ® >> 1 and ® << 1. There is an
essential difference here between the cases vy= 1 and v = 1:

7911, ke ke [1— vor T 00§ + /A% (1 — 3vae cos )] (4.5)
N2 (oo — ko) (1 + 31 A%co?) %~ sin

w1, kaky[1 -+ ven? cos b - 3/, 4%2 (1 4 3vex¥ cos b)) 4.6)
1= (hoo — ko) (1 + 3/44%,%) % sin

rm LS, b {l— v o Yy A% [ — v (2 4 ko)) @)
N = (foo — o) (1 + ¥4 A%o5%) w71

2N, kaky {1 4+ ven® + % A%2 1+ vor? (2 + kool )1} (4.8)
N = (koo — ko) (1 + ¥4 A% %

On taking the limits of k and 7 from (4.5)-(4.8) as Te = o and Tg — 0, and substituting in the first of
(2.5), then solving the latter for the delay term Mw?, two relationships are obtained, defining the frequency
curves for the two amplitudes corresponding to relaxed and unrelaxed oscillations:
0% = 0> (1 + %k*A%) - P (MAY™, o =kM™
0 = 02 (1 + ek A2 k= P (MA)?, 0 = koM™ 4.9

These expressions describe the oscillatory processes for systems with a rigid response, similar to
the processes discussed,e.g., in [11]. Figure 1 gives A = A(w?) curves for the numerical data

0% =1, kb = Y5, k2 =1,
Ve =Y, PM™ =1
2 1

and it can be seen that there are two elastic resonances, at w?, =1 and w3 = ,. When the relaxation time
Te has a finite value, the resonant amplitudes will occupy an intermediate position; and here, as in the
linear case, when ¥ = 1 all the resonant amplitudes will have a common point of intersection [7, 10]. The
difference lies in the fact that, whereas in the linear case the frequency wx at which the resonant ampli-
tudes intersect is determined by the modulus deficiency, or by

@47 = 1,y (e + @%) (4.10)

in the nonlinear case wx is amplitude-dependenf and given by
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047 = 3 (05 + ©0°) + 3/34° (koo 0e0® + Fio’03,?) (4.11)

A
/ ,/ { ) 4 When considering the tangent of the phase-shift (tg ¢), its dependences
1 P on the relaxation time 7y and on the frequency w need to be considered sepa-
" e rately. The asymptotic equations will first be written for large and small
1 v - values of Tg, retraining only first order terms:
! / Cy
LS NN TS, 180 (00 — 02) (1 + Yaker?A%) (0 — 0 4 ekt B uYsin g (4.12)
I .
] ,/ \z el 29 (00" — ") (1 4 3/4k* 4%) (02 — @F - 3/4k 2 A% T ¥ siny  (4.13)
| [
] z 4 It can be seen from these expressions that tg ¢ = 0 for the limiting elas-
Fig. 1 tic cases,

Next, it is easily seen from (2.5) and (4.4) that, at low frequencies
(@ << 1), tg ¢ ~ Q! and is independent of the amplitude. At high frequencies
(w >>1), tg ¢ >0 from negative values, i.e., the angle ¢ — 7. A similar picture is obtained in the linear
case [7, 10]. Nonlinear behavior of tg ¢, leading to a shift of the ¢ curves in the direction of increasing A
as the amplitude rises, occurs in the intermediate frequency range and is most pronounded when w ~ 1.

To sum up, investigation of the stationary mode of a nonlinear elastically hereditary oscillator re-
veals how the nonlinear properties influence the system dynamic characteristics. In particular, Q!, of
the internal friction, proves to be independent of the amplitude of oscillation, i.e., of the nonlinear proper-
ties. This fact needs to be borne in mind when examining retardation—relaxation processes by the method
of internal friction, since the temperature-frequency behavior of Q! fails to provide complete information
on the properties of the elastic material. In view of this, in addition to the dissipative response of Q1 we
need to examine the behavior of the other dynamic characteristics, and notably, the resonant amplitude.
This point is specially important when it comes to considering the so-called "background" of internal
friction, concerning the nature of which there are still contradictory opinions.
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